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1. Photometry and spectroscopy of Nova Del 2013

a)

From the light curve plot the Modified Julian Dates can be read with an error of about 0.5. The
peak of the maximum brightness is very narrow and obviously placed at MJDg = 56 520.5 with a
value of mg = 4.5™, therefore:

MJD, =[56520.5 + 0.5] (2p)

mo = [4.5™ £ 0.05™ | (1p)

The brightness values of 2™ and 3™ decline are 6.5™ £ 0.05™ and 7.5™ 4 0.05™, respectively. (2p)

The corresponding Modified Julian Dates are MJDy and MJD3. Because of the poorly defined slopes
on the light curve around these dates, their acceptable error is larger than in other parts of the light
curve, let say it is about 14, so:

MJD, =[56531.5 1| MJD; =[56543.5 & 1 (2p)

ty =119+ 14| t3=]239+ 14 (2p)

The text of this part does not ask for calculating the individual errors of the formulae, but it is worth
estimating them here, just for the sake of completeness. (Students won’t do it.)

(a) The form of the function is

“logt
(11) M=a+ barctancf;ga a=-7.92b=—081,c=1.32d=023,
so its derivative:
b 1 b At
(1.2) M' = — — — =AM = - — tZ
dlog(10) |1+ (%) ] ? dlog(10) |1+ (%‘EM) ] ’

The value and its error calculated from the formulae above (error is not necessary):

M =[-8.63™ +0.06™] (1p)

(b) The form of the function is
(1.3) M =a+blogty, a=—11.32b=2.55

so its derivative:
b Ay b Ab
to log(10) log(10) to

The value and its error calculated from the formulae above (error is not necessary):

(1.4) M =

MY =[-8.66™ £ 0.10™ | (1p)

(¢) The form of the function is
(1.5) M =a+blogts, a=—11.99,b=2.54

so its derivative:

b Ats
L Am=_—2 2B
t31og(10) ” log(10) 3

The value and its error calculated from the formulae above (error is not necessary):

(1.6) M =

M =[-8.53" £ 0.05™| (1p)
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The standard deviation of a dataset can be calculated as
where n is the number of data points, z; is the i** individual data value and z is their mean,
T=(x1+z2+...+x,)/n.
The mean and the standard deviation of the three absolute maximum brightness values:
My =|—8.61™ £0.07™| (2p)
d) The color excess E(B — V) is the difference between the observed color index of the star and the

intrinsic color index predicted from its spectral type:
(18) E(B-V)=(B-V)=(B=V)y=Ag— Ay
The total extinction is quantified by Ay (at 5550 A). The ratio of total-to-selective extinction:

Ay

— Ay = RE(B — V), where R = 3.1 (2p)

With the given value and error of E(B — V):

Ay =31 x E(B—V)=3.1x (0.184™ 4+ 0.035™) = [0.57™ 4+ 0.11™ (2p)

According to the formula for the distance modulus:

—My+5-—A
(1.11) logd = "V V; L
(1.12) d = 10tmv-Mv+5-4v)/5 (2p)

where the distance d is in parsecs.

Since Aa”/Az = a” Ina, therefore the error of the distance d:
Ad = 10mv=MvH+5=A)/5 510 10 x A((my — My +5 — Ay)/5) (2p)

The error of (my — My +5 — Ay)/5 can be estimated with the sum of the errors of my, My and
Ay, so:

A((mv — My +5— Av)/5) ~ 0.05 (2 p)
With the data:
d = 3220 pc and Ad = 338 pc, (2p)

so the distance to the nova:

d~1|3.2+0.3kpc (2p)
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f)

i)

The well known Doppler formula between the wavelength displacement and radial velocity:

A—X AN o AN
1.13 A% =22 .
(113) 2520 = S0 =2 0 = T (1)

where A\ is the measured wavelength of the line feature, \q is the rest wavelength of the line, c is the
speed of light, and v, is the radial velocity to be calculated.

The wavelength of the P Cygni absorption peak should be extracted from the figure with an error
of about 1 A. The main part of this error is coming from the "definition" of the peak position of the
Gaussian-like profile. This will result in inaccuracy of about Av, = £50kms~! in radial velocities.

(1p)
The wavelengths and radial velocities should be something like these:
MJD WL RV
56518.986 6527 -1636
56519.813 6531 -1454
56520.843 6534 -1317
56521.835 6537 -1179
56522.829 6542 -951
56523.827 6544 -860
6 points for the wavelength values and 6 points for the radial velocity values. (12p)

Radial velocities within the range of 50 km s™! of the RV values listed in the table should be given
full marks, but velocities in the range of 100kms™! are still acceptable with half marks.

See the attached figure as an example for the acceptable solution. The plotted data are taken from
the table above. For the sake of simplicity the absolute values of the radial velocities have been used
for making the graph. (6p)

It is obvious from the plot, that the radial velocities lie along a straight line.

To estimate the size of the expanding envelope we need to calculate the area below the ¢t — v, graph
between the first and last date.

Hence the graph is a straight line, this is very simple: we have to determine the area of the hatched
region which is a trapezoid.

If the two bases and the height of the trapezoid are a, b, and m, respectively, then the area of the
trapezoid is:

(1.14) T:a;bm (3p)

In our case a = v;,, b = v, and m = tg — t;. (1p)

We could use the fitted line (dashed) as the upper side of the trapezoid, but this would be a bit
complicated — because of the difficulties of the fitting process —, and not necessary at all. Instead of
this we use the line connecting the first and last radial velocity points as this runs very close to the
fitted line.

The result: R ~|3.5AU (3p)

The apparent angular diameter of the spherical envelope seen from the Earth:

(1.15) ¥ =2 x arctan <§> ~ 2% (2p)
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Using the values of d ~ 3.2kpc and R =~ 3.5 AU, 5 days after the discovery the angular diameter of
the envelope is:

¥ =10.0022" | =[2.2 mas (2p)

A less formal solution:

e By definition a parsec (1pc) is the distance from the Sun to an astronomical object that has
a parallax angle of one arcsecond, i.e. it represents the distance at which the radius of Earth’s
orbit (1 AU) subtends an angle of one arcsecond.

e Because of the very small angles the distance is a linear function of the parallax. This means
that the radius R ~ 3.5 AU of the envelope subtends one arcsecond viewing from a distance of
d ~ 3.5 pc, and one milliarcsecond from a distance of 1000d ~ 3500 pc = 3.5 kpc.

e Since this value is close to the distance of Nova Del 2013 determined earlier, we can conclude
that the apparent angular diameter of the spherical shape envelope 5 days after the discovery
was about 2 milliarcseconds.
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2. Triply eclipsing hierarchical triple stellar system
i) a) See the following table. (10p)
event no. | contacts | components BJD 1 %))
1 I A, B 2455476.1096 | 0.1226 | 0.9747
I1 A C 2455476.4245 | 0.4703 | 0.9816
11 A B 2455477.9677 | 0.1743 | 0.0155
v A B 2455478.4722 | 0.7313 | 0.0266
2 I A B 2455521.5217 | 0.2643 | 0.9734
3 11 A C 2455568.9434 | 0.6248 | 0.0163
4 I A C 2455612.4733 | 0.6882 | 0.9736
11 A C 2455614.3571 | 0.7682 | 0.0150
5 I1I A B 2455659.9241 | 0.0808 | 0.0171
v A C 2455660.2422 | 0.4320 | 0.0241
b) See the following table. (5p)
event no. closer component
1 A
2 A
3 A
4 A
5 A

All these events occur close to 3 = 0 (or ¢o = 1) which means by definition that star A eclipses
stars B and C. Therefore, star A is closer to the observer.

For full mark there is no need for explanation. 1 point for each event with correct answer.

In the moments of the 1st and last (4th) contacts:

(2.1) Ra + Rpc =da B, (1p)

while in the case of the 2nd and 3rd (inner) contacts:
(2.2) Ra — Rpc =dasnc, (1p)

where da g stands for the sky-projected distance of the disks of the occulting star A and
occulted component B or C.

Let 7 the radius vector directed from star B toward star C, and 7, another radius vector
directed from the centre of mass of stars B and C toward star A.

By the use of these two (Jacobian) vectors, the position vectors connecting stars B and C with
star A, can be written as:

= o = o mgc
(2.3) TBA = TA —TB =72+ < T1, (1p)
mpac
— — — — m —
(2.4) Topa =Ta — o =Ts — B 7. (1p)
mpc

Using the facts that (i = 0°) and, furthermore, i; = 7o = 90°, it is worthy to introduce the
orbital plane as reference frame. Let the origin of our frame of reference be the centre of mass
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of the close binary (denoted as O, in figure above). Furthermore, let axis X directed toward
the line of sight. Therefore, axis Y is located in the tangential plane of the sky.

In this frame of reference, the components of vectors 7} and 75 can simply be written as

(2.5) 71 = ay [cos(1);sin(¢1)], (1p)

(2.6) 75 = ag [cos(¢2);sin(p9)], (1p)

as ¢ takes the values of 2k7m in the moments, when star C eclipses star B, and similarly,
¢o = 2km when star A "eclipses" the centre of mass of the inner binary.

One can also notice that there is a simple relation between these position angles and the
photometric phases defined above as

(2'7) ¢1,2 = 2712 (1 P)

We are interested in the sky-projected distances of the stellar disks, which, in this frame of
reference, are equal to the y components of the vector equations (2.3 and 2.4). Accordingly,

(2.8) dap = |ag |:SiIl(27T902) + ¢ ﬂsin(27r<,01)} : (1p)
mpc Gz

(2.9) da-c = |ag [Sin(Qmpg) SIL ﬂsin(27rg01)] : (1p)
mpc a2

From this point we can use different combinations of eclipsing events given in the table. There-
fore, here we use one possible order only for illustration.
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We notice that both outer contacts (i.e. contacts I and IV) of the first event stars A and B are
involved. Therefore, we can write the same equation for both contacts as follows:
RA+ Rp mg a

2.10) —2 "2 — |sin(2mgs) + —Lsin(2mpr)| . 1p
(2.10) o (27p2) — (2mp1) (1p)

Therefore, we have two independent equations and two unknown variables, namely

—RA+RB, and —2C 21 _ 9B (2p)

a2 mpc a2 a2

(2.11)

The computation is as follows:

For the 1st contact sin 2mpy = —0.158 296, sin 2w = 0.696 364, while for the 4th one sin 27y, =
0.166 356, sin 2w, = —0.993 105. Consequently

(2.12) 0.158296 — 0.696 364 = = 0.166 356 — 0.993 105 2 (1p)
a9 a2
(2.13) Z—S = 0.027 161 (1p)

and, therefore,

(2.14) R‘*a;QRB = 0.1394. (1p)

Now, considering the also available 3rd contact moment of the same event (in which similarly,
stars A and B play the roles), one can get

Ry — Rg

(2.15) =

= |sin(27 x 0.0155) + 0.027 161 x sin(27 x 0.1743)| (1p)

(2.16) RAQ;QRB =0.1214 (1p)

Combining these results, we obtain that

Ry 1(Ra+Rs Rx—R
(2.17) —A:—( AT 0B | I B): 0.1304 (2p)
a9 2 a9 a9
Ry 1(Ra+Rp Rs—R
(2.18) a—B:§< A: B_ Aa B>= 0.0090 (2p)
2 2 2

We repeat a very similar calculation for the 3rd contacts of events 3 and 4, in which cases star
B is substituted with star C.

For the 3rd contact of the third event sin2mpy = 0.102237, sin2mrp; = —0.706 218, while the
3rd contact of the fourth event sin 2mpy = 0.094 108, sin 2w¢; = —0.993 469.

Therefore,

(2.19) 0.102237 + 0.706 218 “C = 0.094 108 + 0.993 469 “ (1p)
a2 a2

(2.20) 2€ = 0.028298 (1p)

a2



@ )
o= !
== 2019 Kesathely, Hungary.

Data analysis Page 11

and, accordingly,

Ra — Rc

(221) =

= 0.1222 (1p)

Taking into account that Rj/as is already known from the previous stage, the dimensionless
relative radius of star C' can be obtained simply as

Rc Ra Ra—R
(2.22) =¢ = A A TC (1304 — 0.1222 = [0.0082 (2p)

as az ag

The other possibility is, however, that e.g. from the 1st contact of event 4 we calculate the sum
(Ra + Rc)/as, as

Ry + R
(2.23) farho |sin(27 x 0.9736) — 0.028 298 X sin(27 x 0.6882)]
a2
Ry + R
(2.24) TATNC 4389
a2

and then we obtain that

Ry 1({Ra+Rc Rx—R
(2.25) —A:—( AT lc, C):0.1306,
a9 2 a9 (05}
Re 1(Rs+Rc Rjx—R
(2.26) =< = = ( At o Zia C) = 0.0084.
a9 2 a9 asg
skokoskoskoskokoskokoskok skokoskoskoskoskoskokokok

Several additional, equivalently acceptable scenarios

We can write three equations for (Rx + Rg)/as:

a1 _ 158296 — 0.696364 22 (1t event st contact)
a9 a2

Ra+ R

SAT B 6166356 — 0.993 105 2B (11V)
(45} a2

Bat Bs 166433 — 0.995966 2 (21)
a9 a2

Combining them one can get:

contacts | ap/ay | (Ra + Rp)/az
1I-1IV | 0.027 161 0.1394
11-21 0.027159 0.1394
1IV-2T | 0.026 988 0.1396

Similarly, for (Ry — Rg)/as:

Ry—R

SA T 0,097 235 +0.889.001 “2 (1111
a2 az

Ry—R

AT .107236 + 0.486 152 -2 (5I1)
a2 Qg

Combining them one can get:
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contacts ag/as (Ra — RB)/as
1ITT-5I1T | 0.024 826 0.1193
Now for (Ra + Rc)/as:
Rao+ R
AT RC (165116 — 0.925553 %< (41)
a9 a2
Rr+ R
SATRC () 150847 — 0414376 %S (5TV)
a2 a2
The only combination gives:
contacts | ac/as (Ra + Rc)/as
4I-5IV | 0.027914 0.1393
Finally, for (Rx — Rc)/as:
RAr—R
AT 0115353 + 0.185 529 < (111)
az az
RAr— R
SA T 0.102237 + 0.706 218 << (3I11)
Qo a2
RAr—R
ZA T 0,094 108 + 0.993 469 “C (4111)
Qs a2
The combinations are:
contacts | ac/az | (Ra — Rc)/as
1I-311T | 0.025190 0.1200
1IT-4IIT | 0.026 295 0.1202
SIIT-4IIT | 0.028 299 0.1222
ook End additional, equivalently acceptable scenarios ook
Now, we are in the position to calculate the inner mass ratio ¢, as follows:
aB/ag 0.027161
2.27 = = =10.9598 2
Furthermore, we can also get the ratio of the semi-major axes as
(2.28) 1 = B 1 9C _ 027161 + 0.028 298 =[0.055 459 (2p)
(05} (05} (05}

The requested results with the range of the full marks (summary):

0.1150 < & < 0.1450
a2

R
0.0075 < =2 < 0.0105
as

R
0.0070 < =€ < 0.0100
a2

0.045 < 2 < 0.065
a2

0.80 < ¢ < 1.25
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d) The quickest method to obtain go comes with the double use of Kepler’s third law. Writing this
law for both the inner and outer orbits, and dividing them one can get, that

(2.29) (ﬂ>3<§)2: B & (4p)
' as Py magc 1+ ¢
() ()
a2 Py
- (%) (3)
a9 P1

0.055 4593 x 50.206 763>
2.31 ~ ~[0.7543 ] 2
(2:31) o 1 — 0.055459% x 50.206 7632 (2p)

Therefore

(2.30) g = (2p)

ii) The circular velocity of star A is

27

(2.32) vp = B A (Ip)
2

The amplitude of the RV curve is equal to maximum value of the line-of-sight component of that

velocity, i.e.
(2.33) K = vy sini,. (1p)

The sinusoidal component in the occurrence of the eclipsing minima times comes from the light-
travel time effect caused by the revolution of stars B and C around the centre of mass of the whole
triple system. In this regard the motion of components B and C can simply be substituted by the
movement of their centre of mass along the outer orbit. Therefore, the total variation of the inner
binary’s distance to the Earth is the line-of-sight component of the diameter of the orbit of the centre
of mass of the inner binary around the centre of mass of the complete triple system, i.e.

(234) AZBC = 27"]30 sin 7:2. (2 p)
Therefore, the amplitude of the light-travel time sine wave is

Az TBC sin ig CAET\/

2.35) A = = — = = : 2
( ) Agrv o0 c TBC Si iy (2p)
Such a way, using that

mpc TA
2.36 = = —, 1
(2.36) g2 Fa— (1p)
one can obtain, that

P Ky

2.37 =" 1
237) @ = 5y A (17)

which gives a second, independent determination of the outer mass ratio ¢s.

The uncertainty can be estimated either as

AP2)2 <AKA>2 <AAETV>2
2.38) Agy, = ( + +
(2:38) Mg ‘D\/ P, Ka Apty
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or
APy|  |AKa|  |AAgry )
2.39) Agy = ( 2
o an = (|52 + |02 +| 52 2v)
With numerical values:
g2 =|0.621 & 0.047] or go =|0.621 =+ 0.048 | (1p)

Then, the semi-major axis of the outer orbit can be calculated in the following alternative ways:

l+qg P Ky 14+¢

2.40 = =

( ) @2 A q2 27 sin ig q2
Agrv

(241) as =rgc(1+ @) =c—— (1 + qo)
S111 729

P, K A
(2.42) Ao =TA +TBC = —2 - A +c ‘ET.V’
27 sin iy sin iy
One of the three equations above: (2p)

We assumed that 75 = 90°, therefore sinio = 1. Then

as = | (60.712 4 2.851) x 10%km = (87.293 & 4.099) R, = (0.406 = 0.019) AU (2p)

The uncertainties from the three different formulae above:

o oY - G i)

Aay ~[2.851 x 10°km ~ 4.10 R, ~ 0.019 AU

AAgry ) 2 ( AQ2 ) 2
2.44) Aa, = <
( ) Aaz GQ\/ Agry N 1+ ¢

Aay ~|4.946 x 10°km =~ 7.11 Ry ~ 0.033 AU

AP, > (P ?
(245) AQQ = \/( 27‘(’2 KA) + (ﬁ AKA> + (CAAET\/)2

Aay ~[2.849 x 10°km ~ 4.10Re, ~ 0.019 AU

One of the three formulae above with its uncertainty: (3p)

In what follows, we use the smallest uncertainties (first row above) but the others, and also the
nonquadratic ones are acceptable, too.

The total mass of the triple now can be calculated directly from Kepler’s third law or, as an alternative
way, one can obtain it from the equations on the centripetal accelerations.

47?2 Gch
2.46 — =
240 TPy =g
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iii)

471'2 . GmA

(247) BC ?22 =

)
a3

where the only unknown quantities are the masses, so they can be calculated separately from the
two equations or, summing the masses we can get back (formally) Kepler’s third law:

4% a3
(248) manc =~ 5 = (4312 £ 0.607) Mo, (2p)
2
from which
(2.49) mp = ;nfq‘: = [(2.660 = 0.383) M, (1p)
(2:50) mnc = manc 7 f = [(1.652 £ 0.245) M, (1p)
4z

We obtained the total mass (mpc) of the inner binary in the second part of the problem. Combining
this with the inner mass ratio (¢;) obtained in the first part, one can get that

mpo 1.652 M
2.51) mp = - —[0.843M 3
(251) ms = 17 = 770,960 (3p)

and

(2.52) me = g1 x mp = 0.960 x 0.843 M, =[0.809 My, (3p)

The dimensionless radius of each star relative to the semi-major axis was calculated in the first
part, while the semi-major axis of the outer orbit (ay) was obtained in the second part. Their
multiplication gives the physical radii of the stars:

(2.53) Ry =0.1304 x 87.29 R, = [11.381 Ry, (3p)
(2.54) Rp = 0.0090 x 87.29 R, =[0.786 R, (3p)
(2.55) Rc = 0.0082 x 87.29 R, =[0.712R,, (3p)




