
РОССИЙСКАЯ ОТКРЫТАЯ ЗАОЧНАЯ  
ШКОЛЬНАЯ АСТРОНОМИЧЕСКАЯ ОЛИМПИАДА – 2007  

 
ЗАДАЧИ С РЕШЕНИЯМИ 

 
1. Условие. Ежедневно наблюдая восход Солнца, житель некоторого населенного пункта 
заметил, что в течение года азимут точки восхода меняется в пределах 90°. Определите широту 
места наблюдения. Рефракцией и размерами диска Солнца пренебречь. (Е.Н. Фадеев) 
 
1. Решение. Рассмотрим для примера северное полушарие Земли и изобразим небесную сферу, 
спроектированную на плоскость небесного меридиана: 
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На этом рисунке P – северный полюс Мира, S – точка юга, AC и A1C1 – проекции суточного 
пути Солнца над горизонтом в дни зимнего и летнего солнцестояния соответственно. Так как 
отрезок AC параллелен проекции экватора, угол OAC равен 
 

γ = 90° + ϕ, 
 
где ϕ – широта места. По свойству внутренних накрест лежащих углов величина угла ACO 
равна величине наклона экватора к эклиптике ε и составляет 23.4°. Используя теорему синусов, 
запишем соотношение между длиной отрезка OA и радиусом небесной сферы: 
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Из симметрии картины очевидно, что для момента летнего солнцестояния длина отрезка OA1 
будет также равна l. Рассмотрим теперь небесную сферу со стороны зенита. Точки A и A1 
являются проекциями точек восхода Солнца в моменты солнцестояний H и H1 на полуденную 
линию. 
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Так как угол HOH1 по условию задачи прямой, угол α, равный модулю азимута восхода 
Солнца в день зимнего солнцестояния (и его дополнению до 180° в день летнего 
солнцестояния) составляет 45°. Из предыдущего уравнения запишем выражение для широты 
места: 
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Второй ответ относится к южному полушарию, для которого можно провести все аналогичные 
рассуждения. 
 
2. Условие. Путешественник, находящийся на экваторе в день весеннего равноденствия, на 
заходе Солнца начинает подниматься по северному склону горы, образующему с горизонтом 
угол 10°. Он делает это так, чтобы постоянно видеть центр Солнца точно на горизонте. Сколько 
времени это будет удаваться путешественнику, если он может развивать скорость до 5 м/с? 
Рельефом местности вокруг горы и рефракцией пренебречь. (О.С. Угольников) 
 
2. Решение. Азимут Солнца в момент его захода на экваторе не изменяется, и горизонтальная 
составляющая перемещения путешественника, направленная на юг, перпендикулярно 
направлению на Солнце, не влияет на условия его наблюдения. А его вертикальное 
перемещение будет приводить к эффекту понижения горизонта, благодаря которому он сможет 
видеть центр диска Солнца на горизонте в течение некоторого времени после его захода у 
подножия горы.  

Найдем связь между погружением центра Солнца под математический горизонт h и 
высотой z, на которой центр Солнца будет виден точно на горизонте. Для этого обратимся к 
рисунку. Наблюдатель находится в точке S на высоте z над поверхностью Земли. Из 
прямоугольного треугольника SHO получаем 

 
.cos)( hzRR +=  

 
Здесь R – радиус Земли. С учетом малости угла h и близости его косинуса к единице получаем 
выражение для высоты z: 
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где величина h выражена в радианах. Для данной задачи указанные соотношения выполняются 
с очень хорошей точностью. Чтобы оказаться на нужной высоте, наблюдателю нужно пройти 
по склону горы расстояние 
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где α – угол между склоном горы и горизонтом. Так как дело происходит на экваторе в момент 
равноденствия, наблюдатель вращается вместе с Землей в плоскости рисунка и видит, как 
Солнце опускается вниз перпендикулярно горизонту. Его глубина под горизонтом будет 
зависеть от времени как 

),( 0tth = ω  
 

где t0 – момент захода Солнца у склона горы и начала подъема путешественника, а ω – угловая 
скорость осевого вращения Земли относительно Солнца, равная  
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Здесь T – продолжительность солнечных суток. Из последних соотношений мы получаем 
зависимость расстояния от времени: 
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Получается, что для достижения своей цели путешественник должен подниматься в гору с 
постоянным ускорением, равным 
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Значение этого ускорения составляет 0.194 м/с2, что в течение некоторого времени вполне под 
силу человеку даже при подъеме в гору. Величина этого времени составляет 
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или 25.7 секунды. Необходимо отметить, что в умеренных широтах, где Солнце опускается под 
горизонт медленнее, «удерживать» его на горизонте, поднимаясь в гору, можно в течение 
нескольких минут. 
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3. Условие. С давних времен наряду с саросом астрономам был известен цикл Метона, 
содержащий 254 сидерических месяца или около 19 тропических лет. Этот цикл характерен не 
только для затмений, но и для покрытий звезд Луной – в каждом метоновом цикле 
последовательность покрытий практически повторяется. Через 19 лет после одного покрытия 
звезды Альциона (η Тельца, ярчайшая звезда скопления Плеяды) Луной может произойти 
другое идентичное покрытие этой же звезды. В скольких подряд циклах Метона будет 
происходить такое же покрытие? Продолжительность сидерического и драконического месяцев 
составляет соответственно 27.321662 и 27.212221 суток, эклиптическая широта Альционы 
равна +4°03′. (О.С. Угольников) 
 
3. Решение. Сравнивая сарос и цикл Метона применительно к затмениям, нужно отметить, что 
точность цикла Метона значительно ниже, поэтому уже через один цикл – 19 лет – солнечное 
либо лунное затмение существенно меняет свои характеристики, и продолжительность 
действия серии Метона для затмений во много раз короче времени действия сароса. 
Отличительной особенностью цикла Метона, из-за которой он и был отмечен, является его 
близость к целому количеству тропических лет (точная величина – 19.000275 тропических лет 
или 18.999538 сидерических лет). Благодаря этому цикл Метона в равной степени применим 
как к затмениям, так и к покрытиям звезд Луной. Его точность зависит от того, насколько 
количество драконических месяцев в цикле близко к целому числу. Обозначив сидерический и 
драконический месяцы через TS и TD, вычислим количество драконических месяцев в цикле 
Метона: 
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Это означает, что по истечению одного цикла Метона Луна сделает 255 оборотов относительно 
линии узлов (линии пересечения своей орбиты с плоскостью эклиптики) и еще 0.0215 оборота, 
что составляет 7.75°. Именно настолько через 19 лет изменится расстояние Луны и звезды, 
которую она покрывает, от узла лунной орбиты. Обозначим данный угол как γ. 

Эклиптическая широта Альционы (+4°03′) близка к величине наклона орбиты Луны к 
эклиптике i, равного 5°09′. В отличие от затмений или покрытий звезд вблизи эклиптики, 
которые происходят только вблизи узла лунной орбиты, покрытие Альционы может наступить 
вдали от обоих узлов, когда Луна в этой области неба проходит севернее эклиптики. Подобная 
ситуация, кстати, имеет место в 2007 году. Определим интервал значений эклиптической 
широты Луны, при которых может наступить покрытие Альционы.  
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Из рисунка видно, что максимальное геоцентрическое угловое расстояние между центром 
Луны и Альционой, при котором на Земле наступает покрытие, составляет 
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или 1°13′. Учитывая, что Луна движется по небу под малым углом к эклиптике, получаем, что 
минимальная и максимальная эклиптические широты Луны будут равны соответственно: 
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+4°03′– 1°13′ = +2°50′;  +4°03′+1°13′ = +5°16′. 
 

Верхняя граница этого интервала превышает значение наклона орбиты Луны к эклиптике и 
никогда не достигается. Найдем угловую длину части лунной орбиты, эклиптическая широта 
которой превышает +2°50′ (обозначим этот угол через α).  
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Ввиду малости угла i, мы можем считать, что эклиптическая широта меняется вдоль орбиты 
Луны синусоидально. В этом случае длина дуги l, в которой широта превышает величину α, 
составляет 

.2.113arccos2 o==
i
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Через каждый следующий цикл Метона Луна и Альциона будут смещаться влево по этой дуге. 
Общее количество циклов в одной серии будет равно 
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Количество покрытий в одной серии Метона может быть 14 или 15, а продолжительность всей 
серии составляет 247 или 266 лет. Это значительно больше продолжительности серии Метона 
для затмений или покрытий звезд на эклиптике. Так как цикл Метона содержит целое число 
лет, покрытия будут наблюдаться при одинаковой фазе Луны в одну и ту же или в соседние 
даты. «Новогоднее» покрытие Альционы Луной 31 декабря 2006 года является одним из серии 
из 14 покрытий Альционы с 1 января 1931 года до 1 января 2178 года, каждое из которых 
происходит вблизи Нового года. 
 
4. Условие. В большой оптический телескоп будущего проводятся визуальные наблюдения 
искусственной малой планеты – идеально отражающего металлического шара с диаметром, 
равным диаметру объектива телескопа. Шар обращается вокруг Солнца по круговой орбите с 
радиусом 3 а.е. Найти минимальное значение диаметра объектива телескопа. Яркостью фона 
неба и атмосферными помехами пренебречь. (О.С. Угольников) 
 
4. Решение. Обозначим светимость Солнца через L, а минимальный поток света, доступный 
невооруженному глазу (он соответствует звезде 6m) – через j. Поток энергии от Солнца вблизи 
металлического шара составляет 
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где d – расстояние от Солнца до астероида. Всю энергию, попадающую на шар, он будет 
равномерно отражать во все стороны – таково свойство идеально отражающего гладкого 
зеркального шара. В результате, шар радиусом R будет светить в окружающее пространство с 
мощностью: 
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Ярче всего шар будет виден на Земле в противостоянии. Поток энергии от шара на Земле в это 
время составит 
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Здесь d0 – радиус орбиты Земли (астрономическая единица). При правильном выборе 
увеличения и отсутствии помех в зрачок глаза наблюдателя радиусом r попадет вся энергия, 
собранная зеркалом с радиусом R (таким же, как и у шара), и поток у зрачка составит  
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По условию задачи, этот поток должен быть по крайней мере равен потоку от звезды с m=6. 
Поток энергии от Солнца на Земле равен 
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где константа C может быть вычислена из формулы Погсона с учетом известной видимой 
звездной величины Солнца m0 (–26.8): 
 

.1032.110 13)(4.0 0 ⋅== −⋅ mmC  
 

С учетом последних трех формул получаем выражение для минимального радиуса шара и 
объектива телескопа: 
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Подставляя численные значения, получаем 40 метров, диаметр составляет 80 метров. Таких 
телескопов в настоящее время еще нет, но в ближайшие десятилетия они наверняка появятся. 
 
5. Условие. Две звезды имеют одинаковые физические характеристики, наблюдаются на небе 
рядом друг с другом, но расстояния до них различаются. Обе звезды и наблюдатель находятся в 
однородном облаке межзвездной пыли. Фотометрические измерения этих звезд в полосе B дали 
результат 11m и 17m, в полосе V: 10m и 15m. Во сколько раз одна из звезд дальше от нас, чем 
другая? Считать, что поглощающая способность пыли пропорциональна длине волны в степени 
(–1.3). (Е.Н. Фадеев, О.С. Угольников) 
 
5. Решение. Наличие пыли на пути излучения от источника к наблюдателю уменьшает 
видимую яркость источника. Поток вместо величины J0, соответствующей чистой среде, 
составит величину J: 

,0
rkeJJ ⋅−⋅=  

 
где r – длина пути луча сквозь слой пыли, k – коэффициент поглощения, пропорциональный 
концентрации пыли и зависящий от ее свойств. Размерность величины k обратна размерности 
длины. В случае однородного облака пыли, охватывающего и источник, и наблюдателя, 
величина r равна расстоянию от источника до наблюдателя. Если выразить эту величину в 
парсеках, а k – в единицах на парсек, то можно обобщить формулу для зависимости звездной 
величины светила от расстояния до него: 
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m = M – 5 + 5 lg r + E ·r, 
 
где E = 1.086·k, m и M – видимая и абсолютная звездные величины звезды.  

Коэффициенты поглощения k и E зависят от длины волны. Определим соотношение 
величин E для фотометрических полос B (средняя длина волны λB равна 4400 A) и V (средняя 
длина волны λV равна 5500 A): 
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Из-за зависимости от длины волны поглощение меняет цвет звезды, делая его более красным. 
Изменение показателя цвета B–V – разницы звездных величин в полосах B и V на единицу 
длины пропорционально коэффициенту поглощения в полосе V: 
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В отсутствие поглощения показатель цвета звезды не зависел бы от расстояния. В пылевой 
среде цвет становится более красным. Записывая выражения для звездных величин в полосах B 
и V и вычитая второе уравнение из первого, получаем  
 

mB – mV = B – V = (MB – MV) + EB–V · r, 
 
Обозначим расстояния до ближней и дальней звезды через r1 и r2. Звезды одинаковы по своим 
свойствам, их абсолютные величины равны. Разность их видимых показателей цвета составляет 
 

(B – V)2 – (B – V)1 = EB – V · ( r2 – r1) = 1m, 
 
следовательно 

EV · ( r2 – r1) = 2.97m. 
 

Разность звездных величин двух звезд в полосе V равна 
 

V2 – V1 = 5 (lg r2 – lg r1) + EV·( r2 – r1) = 5m. 
 
Из последних двух уравнений получаем 
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6. Условие. Переменная звезда – цефеида с периодом в 50 суток видна на небе невооруженным 
глазом. В телескоп вокруг этой звезды обнаружена сферическая двухслойная отражающая 
туманность, рассеивающая излучение звезды, с угловыми радиусами слоев 10″ и 21″. Яркость 
обоих слоев также изменяется с периодом в 50 суток, максимум достигается через 30 и 18 суток 
после максимума самой цефеиды для внутреннего и внешнего слоя соответственно. Найдите 
расстояние до цефеиды. (Е.Н. Фадеев, О.С. Угольников) 
 
6. Решение. Сферическая отражательная туманность, располагающаяся вокруг цефеиды, 
переизлучает в окружающее пространство свет цефеиды. Как и у сферических планетарных 
туманностей, состоящих из разреженного газа, яркость отражательной туманности достигает 
максимума на краю, где луч зрения проходит большой путь сквозь слой по касательной 
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траектории. Максимум свечения слоя туманности наступает во время наблюдения максимума 
цефеиды с поверхности этого слоя. 
 

Цефеида

r

r

1

2

ЗемляL
α1

α2

 
 
Так как время распространения света от цефеиды и края i-того слоя к наблюдателю одинаково, 
разность времени между максимумами цефеиды и слоя туманности составит 
 

.
c
r

T i
i =Δ

 
 

Однако это время может превышать период цефеиды. В общем случае оно будет связано с 
величиной запаздывания Δti, измеряемой при наблюдениях, следующим образом: 
 

.),( TtnTtTnT iiiiiii Δ=ΔΔ+⋅=Δ+⋅=Δ ϕϕ  
 

При этом величина Δti не меньше нуля и меньше периода цефеиды T (аналогично, фаза 
запаздывания Δϕi не меньше нуля и меньше единицы), а целое неотрицательное число ni 
заранее неизвестно. В этом состоит основная неопределенность метода измерения расстояний 
по наблюдениям отражательных туманностей. 

Выражая радиус слоя туманности ri через его угловые размеры и расстояние до 
наблюдателя, получаем 

.)(
c

L
nT i

ii ϕ =Δ+⋅
α

 
 

Выражая период цефеиды в сутках (8.64·104 секунд), расстояние до цефеиды – в килопарсеках 
(3.086·1019 метров), угловой радиус слоя – в угловых секундах (4.848·10–6 радиан), 
переписываем эту формулу как 
 

.77.5)( iKpciid LnT αϕ ′′⋅=Δ+⋅  
 
Для нахождения расстояния L необходимо определить числа ni. В решении этой проблемы нам 
поможет тот факт, что мы наблюдаем двухслойную туманность. Записав последнее уравнения 
для обоих слоев и поделив второе уравнение на первое, получим 
 

.1.2
1

2

11

22 =
′′

=
Δ+
Δ+

α
α

ϕ
ϕ

n
n ′′

 
 

Величины запаздывания максимумов в 30 и 18 суток для первого и второго слоя соответствуют 
фазам 0.60 и 0.36. Взяв значение Δϕ1, равное 0.60, и различные значения n1, определим для них 
величины n2 и Δϕ2, выделив из них те, для которых Δϕ2, будет соответствовать наблюдаемой 
величине: 
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n1 (n1+Δϕ1) 2.1·(n1+Δϕ1) n2 Δϕ2 L, кпк 
      

0 0.60 1.26 1 0.26  
1 1.60 3.36 3 0.36 1.39 
2 2.60 5.46 5 0.46  
…      
11 11.60 24.36 24 0.36 10.05 
…      
21 21.60 45.36 45 0.36 18.72 
…      

 
Как видно из таблицы, существует множество решений, соответствующих наблюдательным 
данным. В последней колонке для каждого возможного решения приведены значения 
расстояния до звезды. Для выбора правильного решения вспомним, что цефеида видна на 
земном небе невооруженным глазом. Цефеиды – яркие сверхгиганты, абсолютная звездная 
величина которых M связана с периодом и для нашей звезды составляет порядка –6. Видимая 
звездная величина в отсутствие поглощения равна 
 

m = M – 5 + 5lgLKpc. 
 

Для минимального из возможных расстояний (1.39 кпк) видимая звездная величина получается 
равной примерно 5m, что достаточно для наблюдений невооруженным глазом. Второе 
возможное расстояние (10 кпк) приводит к значению видимого блеска около 11m. На самом 
деле, цефеида будет еще слабее из-за поглощения света в межзвездной среде, весьма 
значительного для подобных расстояний. То же самое относится и ко всем последующим 
решениям с еще большими расстояниями. В итоге, учет всех данных, приведенных в условии 
задачи, приводит к единственному решению: расстояние до цефеиды составляет 1.39 
килопарсек.  
 
7. Условие. В астрофизике и космологии часто используется планковская система единиц, в 
которой гравитационная постоянная G, скорость света c и постоянная Планка h равны единице 
и не имеют размерностей. В данной системе любая физическая величина может быть выражена 
в единицах другой величины. Выразите в планковской системе астрономическую единицу 
(расстояние от Земли до Солнца) в секундах, в килограммах и в джоулях. Имеют ли 
полученные числа физический смысл? (Н.И. Перов) 
 
7. Решение. Для начала получим выражения для единичных планковских величин – длины, 
массы и времени в нашей обычной системе единиц (СИ). Эти величины есть комбинации трех 
мировых констант – G, c и h, имеющие размерность длины, массы и времени в системе СИ (при 
описании единиц, связанных с температурой, к системе констант добавляется также постоянная 
Больцмана k). Это можно сделать методом размерностей. Запишем размерности каждой из 
мировых констант в системе СИ: 
 

<G> = L3M– 1T–2; 
<c> = L1T–1; 

<h> = L2M1T– 1 . 
 

Здесь L, M и T есть размерности длины, массы и времени соответственно. Планковская длина 
выражается как 
 

lP = G α c β h γ , 
 



    Российская Открытая Заочная Школьная Астрономическая Олимпиада – 2007     

   10   

где показатели степени удовлетворяют уравнениям, соответствующим длине, массе и времени: 
 

3α + β + 2γ = 1, 
–α + γ = 0, 

–2α – β – γ = 0. 
 

Решая эти уравнения, получаем α = γ = 1/2, β = –3/2. В итоге 
 

.3c
GhlP =

 
 

Планковская единица длины оказывается равной 4·10–35 м. Аналогичным образом получаем 
выражение для планковского времени и планковской массы: 
 

;5 G
hcm

c
Ght PP == .

 
 

Численные значения составляют соответственно 10–43 секунды и 5·10–8 кг. Полученные 
величины имеют физический смысл. Планковская длина и планковское время характеризуют 
самый ранний этап существования нашей Вселенной, на котором неприменимы существующие 
физические теории. Планковская масса (ее еще называют «массой максимона») является 
верхним пределом на массу элементарной частицы. 

В планковской системе единиц все полученные величины безразмерны и равны единице. 
Соответственно, обычные метр, килограмм и секунда есть также безразмерные величины, 
численные значения которых обратны численным значениям планковской длины, массы и 
времени в системе СИ. К примеру, один метр есть число 2.5·1034. Астрономическая единица D, 
выраженная в планковских единицах, составит 

 

.1075.3105.2105.1 453411 ⋅===⋅⋅⋅>=<
Gh
ccD

l
DD
P  

 
Для того чтобы выразить физическую величину A в единицах физической величины B в 
планковской системе единиц, достаточно взять отношение величин A и B в планковских 
единицах. В частности, чтобы выразить астрономическую единицу в секундах, планковское 
выражение астрономической единицы нужно поделить на планковское выражение секунды, 
или, что то же самое, умножить ее на планковское время: 
 

.50055 c
c
D

c
Gh

Gh
ccD

c
GhDD T ===>=<><

 
 

Из формулы сразу виден физический смысл выражения астрономической единицы в секундах: 
это есть время, за которое свет проходит расстояние, равное астрономической единице. 
Выразим далее астрономическую единицу в килограммах: 
 

.102 38
2

кг
G
cD

G
hc

Gh
ccD

G
hcDD M ⋅===>=<><

 
 

С точностью до фактора 2 это есть масса черной дыры с радиусом, равным астрономической 
единице. Чтобы выразить астрономическую единицу в единицах энергии, получим сначала 
выражение для планковской энергии: 
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,
5

22

G
hctmlE PPPP == −

 
 
что составляет 5·109 Дж. Выражение астрономической единицы в джоулях дает значение 
 

.102 55
455

Дж
G
cD

G
hc

Gh
ccD

G
hcDD E ⋅===>=<><

 
 

По порядку величины это есть энергия покоя черной дыры с радиусом, равным 
астрономической единице. 

 
Задачи об эволюции комет в Солнечной системе 

 
8. Условие. Примерно раз в 5 лет на Земле наблюдаются яркие кометы, ядра которых имеют 
радиус порядка одного километра. Орбиты этих комет близки к параболическим. Считая, что 
кометные ядра с радиусом 1 км равномерно заполняют шарообразное облако Оорта с радиусом 
10000 а.е., оцените общее количество таких ядер и массу облака Оорта. (О.С. Угольников) 
 
8. Решение. Данная задача является оценочной, требуемые величины можно определить лишь 
с точностью до порядка величины, вводя некоторые предположения, упрощающие построение 
решения. В зависимости от степени правдоподобия этих предположений мы получим ответ, 
более или менее близкий к действительности. Некоторые из этих предположений (одинаковые 
размеры ядер, их равномерное распределение внутри шарообразного облака) заложены сразу в 
условие задачи, что тоже нужно учитывать при решении. 

Самая простая модель решения строится на предположении, что кометы пролетают с 
некоторой скоростью относительно Солнца по прямым линиям. Те из них, что попадают во 
внутренние области Солнечной системы (ближе к Солнцу, чем крупнейшая планета Юпитер с 
радиусом орбиты L, равным 8·1011 м), существенно отклоняются от прямолинейных 
траекторий, заходят в область планет земной группы, разгораются и наблюдаются с Земли как 
яркие «хвостатые светила».  

Частота подобных встреч с яркими кометами зависит от концентрации кометных ядер в 
облаке Оорта и их характерной скорости относительно Солнца. Разумеется, при подлете к 
Солнцу кометные ядра значительно ускоряются, нас же интересует скорость, которую кометы 
имеют вдалеке от Солнца, так как именно она определяет частоту встреч ядер с Солнцем при 
заданной концентрации ядер. Так как облако устойчиво во времени, вполне естественно 
предположить, что эта скорость по порядку величины равна первой космической скорости на 
расстоянии, равной радиусу облака R: 

.
R

GMv =
 

 
Здесь M – масса Солнца. Значение скорости получается равным 300 м/с. Далее заметим, что 
при одинаковой концентрации внутри облака вероятность встречи с кометным ядром 
одинакова во всех направлениях. Поэтому для упрощения картины мы можем считать, что все 
ядра движутся со скоростью v в одном направлении или, что то же самое, Солнце пролетает 
сквозь неподвижное облако Оорта со скоростью v. За время t, равное 5 годам или 1.5·108 
секундам, Солнце пройдет путь v·t, а внутренние области Солнечной системы с радиусом L 
вычертят цилиндр с объемом 

.2vtLV π=  
 
По условию задачи, за это время к Солнцу приблизится одна комета. Значит, концентрация 
ядер в облаке Оорта составляет одну единицу на данный объем: 
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Умножая концентрацию на объем облака Оорта, получаем оценку полного количества крупных 
кометных ядер в облаке: 
 

.10
3

4
3
4

3
4 11

2

27

2

3
3 ≈===

GMtL
R

vtL
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Для оценки массы одного ядра примем, что его плотность ρ равна плотности воды, что 
достаточно близко к действительности: 

.4 3ρπrm =
3  

 
Здесь r – радиус ядра. Масса ядра получается равной 4·1012 кг, а масса всех километровых ядер 
в облаке Оорта – около 1023 – 1024 кг, то есть несколько меньше массы Земли. Однако при этих 
расчетах мы не учли вклад более мелких кометных ядер, которые из-за своего большого 
количества содержат основную долю массы облака Оорта. По современным оценкам, масса 
облака Оорта сопоставима с массой Юпитера (1027 кг). 

Число крупных кометных ядер в облаке Оорта можно оценить и другим способом. Для 
этого предположим, что все кометные ядра обращаются вокруг Солнца в различных 
направлениях по орбитам, близким к круговым. Круговая скорость кометных ядер v уже была 
оценена выше и составляет 300 м/с. Для того, чтобы ядро перешло на орбиту, приводящую его 
в окрестности Солнца, оно должно вступить во взаимодействие с другим ядром. 
Гравитационное поле кометного ядра достаточно слабое, вторая космическая скорость на 
поверхности значительно меньше характерных скоростей ядер. Поэтому орбита может 
измениться только при непосредственном столкновении ядер. Аналогично рассуждениям выше 
относительно встречи Солнца с кометным ядром получаем значение вероятности столкновения 
одного кометного ядра с каким-либо другим ядром за время t: 
 

v trnp ⋅⋅= 2π ⋅. 
 

Однако подобное событие может произойти с каждым из ядер. Поэтому, чтобы определить 
общее число столкновений за время t, нужно умножить вероятность столкновения для одного 
ядра на полное число ядер: 

44 32223 v tRrnRnpNC ππ =⋅⋅=
3 3

.
 

 
Если за время t, равное 5 годам или 1.5·108 секундам, происходит одно столкновение, то 
концентрация кометных ядер в облаке Оорта равна 
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а полное количество крупных ядер 
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2
3
4 143 ⋅===
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что приводит нас к суммарной массе крупных ядер порядка массы Юпитера – 1027 кг. 
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Столь сильная разница результатов, полученных двумя способами (разница в 3-4 
порядка), не должна удивлять, так как оба метода являются лишь моделью, которая может быть 
далека от действительности. Однако сделанные оценки создают достаточно наглядное 
представление об облаке Оорта. Какая из двух оценок точнее – зависит от реальных размеров и 
распределения скоростей кометных ядер в облаке.  
 
9. Условие. Комета с параболической орбитой в перигелии подходит близко к Юпитеру, а 
после взаимодействия с ним переходит на новую гелиоцентрическую орбиту с периодом, в 2 
раза меньшим, чем у Юпитера. Определите угол поворота кометы в гравитационном поле 
планеты. Орбиту Юпитера считать круговой, плоскости орбит Юпитера и кометы совпадают. 
(Н.И. Перов) 
 
9. Решение. Эволюцию орбиты кометы при ее сближении с Юпитером можно рассмотреть 
следующим образом: в период сближения (который значительно короче периода обращения 
Юпитера вокруг Солнца) комета является временным спутником планеты, движущимся около 
нее по гиперболической орбите, а до и после этого она движется в поле тяжести Солнца. По 
закону сохранения энергии, величина скорости кометы относительно Юпитера до и после 
прохождения в зоне его тяготения одна и та же, может измениться только ее направление. При 
этом меняется величина гелиоцентрической скорости кометы и ее орбита. В этом заключается 
суть гравитационного маневра, посредством которого комета переходит с параболической 
орбиты на эллиптическую, а межпланетные аппараты, напротив, с эллиптической орбиты могут 
уйти на окраины Солнечной системы или даже покинуть ее. Это не противоречит закону 
сохранения энергии, так как дополнительную энергию забирает (или отдает) планета, которая 
тоже на ничтожную величину изменяет характеристики своей орбиты. 

По условию задачи, орбита Юпитера круговая, а орбита кометы параболическая. 
Следовательно, их гелиоцентрические скорости перед встречей составляли 
 

.2,
R

GMv
R

GMv CP ==
 

 
Комета находится в перигелии своей параболической орбиты, поэтому ее скорость, как и 
скорость Юпитера, направлена перпендикулярно радиусу-вектору. А так как плоскости орбит 
кометы и Юпитера совпадают, то их скорости параллельны друг другу. Они могут быть как 
сонаправлены, так и противонаправлены. Рассмотрим сначала второй случай. Скорость кометы 
относительно Юпитера равна 

).12(* +=+=
R

GMvvu PC
 

 
После сближения она остается по модулю такой же. Новая гелиоцентрическая скорость кометы 
v* есть векторная сумма скоростей u* и vP. По модулю она не может быть меньше модуля 
разности величин этих скоростей: 
 

.2, **** R
GMvuv PP =−≥+= vuv

 
 

Получается, что вне зависимости от угла поворота в поле Юпитера, комета останется на 
незамкнутой орбите и покинет Солнечную систему, что противоречит условию задачи. 
Следовательно, до встречи с Юпитером комета двигалась в ту же сторону, что и планета, и ее 
планетоцентрическая скорость составляла 
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и осталась такой же по модулю после пролета вблизи Юпитера. Для нахождения новой 
гелиоцентрической скорости кометы определим большую полуось новой орбиты кометы a, 
сравнив ее с орбитой Юпитера: 
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Гелиоцентрическая скорость кометы после встречи с Юпитером равна 
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Обозначим угол поворота кометы в гравитационном поле Юпитера (угол поворота вектора 
скорости кометы u относительно Юпитера) через γ. Этот угол является смежным к одному из 
углов треугольника, все стороны которого нам известны. По теореме косинусов получаем 
значение угла поворота кометы 
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10. Условие. 16 мая 2006 года Земля пролетела мимо роя осколков кометы Швассмана-
Вахмана 3. При наблюдении с нашей планеты рой имел нитевидную форму длиной в 40°, 
пространственные расстояния до двух концов этого роя составляли 0.055 и 0.105 а.е. Считая, 
что комета Швассмана-Вахмана 3 распалась в результате мгновенного изотропного взрыва, 
произошедшего вблизи перигелия в октябре 1995 года, оцените скорость разлета осколков 
кометы после взрыва. Через сколько лет метеорный поток, образованный кометой, сможет 
наблюдаться на Земле ежегодно? Перигелийное расстояние кометы составляет 0.939 а.е., а 
эксцентриситет ее орбиты – 0.693. (О.С. Угольников) 
 
10. Решение. На первый взгляд может показаться странным, что после изотропного взрыва 
осколки кометы расположились на небе и в пространстве в виде нитевидного роя. Однако это 
легко объяснить. Подобные взрывы застают комету вблизи точки перигелия орбиты, и комета 
Швассмана-Вахмана 3 не исключение. Небольшое приращение скорости, перпендикулярное 
орбитальной скорости кометы в перигелии, не приводит к изменению орбитального периода, и 
все частицы, выброшенные при взрыве в боковом направлении, по истечению оборота вокруг 
Солнца окажутся в той же области пространства. Их расстояние от центра роя в течение 
длительного времени будет достаточно малым.  

В то же время, приращение скорости, направленное вдоль (или навстречу) орбитальному 
движению, приведет к изменению величины орбитального периода. С каждым следующим 
оборотом вокруг Солнца эти частицы будут располагаться все дальше от центра роя, причем 
частицы, выброшенные «вперед» по ходу движения кометы, через оборот окажутся позади роя. 
В результате, разбросанные взрывом осколки кометы будут вытягиваться вдоль орбиты, 
образуя метеорный поток, который будет наблюдаться с Земли, если она пройдет вблизи 
орбиты кометы. Длина роя будет увеличиваться в перигелии (за счет большой скорости частиц) 
и уменьшаться в афелии. Большие угловые размеры роя осколков кометы Швассмана-Вахмана 
3 уже через 11 лет после распада связаны с его близостью к перигелию и к Земле.  
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Пространственную длину роя осколков кометы можно определить по данным условия 
задачи: 

..072.0cos2 21
2
2

2
1 eaddddl =−+= θ  

 
или 10.8 млн км. Здесь d1 и d2 – расстояния до двух концов роя, θ – угловое расстояние между 
ними на земном небе. Большая полуось орбиты кометы составляет 
 

..059.3
1

ea
e

pa ==
−  

 
Здесь p – перигелийное расстояние, e – эксцентриситет орбиты. По III закону Кеплера 
получаем, что орбитальный период кометы составляет 5.35 лет, то есть от взрыва кометы до ее 
встречи с Землей прошло два орбитальных периода.  

Гелиоцентрическая скорость кометы вблизи Земли (на расстоянии r от Солнца) 
оценивается по формуле 
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Здесь M – масса Солнца, v0 – орбитальная скорость Земли. Подставляя численные значения, 
получаем 38.5 км/с. В итоге, передняя (по отношению к орбитальному движению) часть роя 
хоть и движется чуть медленнее задней, но обгоняет ее в движении на время 
 

,
v
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что составляет 2.8·105 секунд или 3.25 суток. Эта величина равна 1.66·10–3 от орбитального 
периода кометы Швассмана-Вахмана 3. Данная разница набралась за 2 оборота роя вокруг 
Солнца, следовательно, его передние частицы имеют орбитальный период, на 8.3·10–4 часть 
меньший, чем задние частицы. Через (1/8.3·10–4), то есть через 1200 оборотов роя вокруг 
Солнца, его передняя часть сделает на целый оборот больше, чем задняя, и рой заполнит всю 
свою орбиту. В этот момент выполнится условие задачи, так как Земля будет встречаться с 
метеорными частицами при каждом пересечении орбиты роя. Умножая 1200 на орбитальный 
период, получаем искомую величину времени: около 6400 лет. Тем самым мы ответили на 
второй вопрос задачи.  

Для нахождения скорости разлета осколков кометы при взрыве учтем, что орбитальный 
период обоих краев роя отличается от периода центра роя на величину 
 

,
42

103.8 4 τ
=⋅

⋅
=Δ

−
TT

 
 
что составляет 7·104 секунд. Рассмотрим осколки, движущиеся в задней части роя. Их 
перигелийная скорость, эксцентриситет орбиты и орбитальный период составляют vP+ΔvP, e+Δe 
и T+ΔT, где vP, e и T – те же величины для центра роя. Величина перигелийной скорости центра 
роя составляет 
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или 40.0 км/с. Учитывая, что все поправки к параметрам орбиты для краев роя малы по 
сравнению с самими параметрами, выражение для перигелийной скорости задней части роя 
можно записать как 
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Отсюда 
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Величина большой полуоси орбиты задней части роя составит 
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Отсюда 
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Наконец, орбитальный период задней части роя, по III закону Кеплера, будет равен 
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В результате, 

.
1
13

2
3

P

P
v
v

e
eT

a
aTT

Δ
⋅

−
+

⋅=
Δ

=Δ
 

 
Из данной формулы получаем выражение для скорости, с которой задняя часть роя вылетала из 
его центра вперед по направлению движения: 
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Подставляя численные значения, получаем величину скорости: 1 м/с! Кажущийся нам 
масштабным явлением, взрыв кометы вовсе не имел катастрофической силы. Наше обманчивое 
восприятие обязано близости осколков кометы Швассмана-Вахмана 3 к Земле в 2006 году, а 
также тому, что видимая скорость расширения роя кометы (его настоящая длина, деленная на 
удвоенное время с момента взрыва), в 16.5 раз превосходит истинную скорость его разрыва. 


