
USAAAO 2018 Second Round Solutions

March-April 2018

1 Short Questions

1. In order to detect an Earth-twin, we need significant advances in the precision of spectrographs to detect
the periodic Doppler shift of nearby stars. Estimate the radial velocity semi-amplitude, in m/s, that a
planet with the mass, radius, and semi-major axis of Earth would cause in the motion of a star with
the mass of the Sun. Assume that the Earth-twin has zero eccentricity. Note that the mass of Earth is
5.97 · 1024 kg, and the distance from the Earth to the Sun is 1.5 · 108 km.

Solution: Since vp = 2πa
T = 29.9 km/s, and from 2nd Kepler’s law vs

vp
=

mp

ms
. Calculating it ends

up being

vs = vp ·
mp

ms
= 29.9km/s · Me

Ms
,

where Me is the mass of the Earth and Ms is the mass of the Sun. Plugging in the numbers we get
vs = 0.090m/s. Thus the radial velocity semi-amplitude of ∼ 0.1m/s.

2. Planet nine is a hypothesized planet in the outer Solar System that may explain the clustering of orbital
elements of distant trans-Neptunian objects. The hypothesized periapse of planet nine is 200AU , and
the apoapse is expected to be at approximately 1200AU . What would the eccentricity of planet nine
be? How does this eccentricity compare to that of the 8 major planets in the Solar System?

Solution: e =
ra−rp

(ra+rp) = .714, much larger than any planet in the Solar System.

3. What is the main-sequence lifetime of a star with a mass of 0.1 Solar masses, and a star with a mass
of 10 Solar masses? Assume that stellar luminosity, L ∝ M3.5, where M is stellar mass, and that the
main-sequence lifetime of the Sun is 10 billion years.

Solution: If L ∝ M3.5, then age t ∝ M−2.5. Plugging in for M = 10 and 0.1 solar masses and
t0 = 10Gyr, we get:

t = 31.6 million years for M = 10 solar masses

t = 3160 billion years for M = 0.1 solar masses.

4. The Very Large Array radio interferometer (λ = 1m) has maximum baseline of D = 36.4km. How large
will an optical telescope have to be to achieve a similar angular resolution in visible light (λ = 5, 500Å)?

1



Solution: Answer: 20mm

Θ[rad] = 1.22
λ

Diameter
= 1.22

1

36.4 · 103
= 0.0000335rad

Diameter = 1.22
λ

Θ
= 1.22

550 · 10−9

0.0000335
= 0.020m = 20mm

5. An amateur astronomer observes the Moon with 20cm telescope, and accomplishes 160x magnification
with an eyepiece with focal length 10mm. What is the f -number of the telescope?

Solution: Answer: 8

Magnification = F
f , where F is telescope focal length, f is eyepiece focal length

F = Magnification · f = 160 · 10 = 1600mm

F − number =
F

D
=

1600

200
= 8

6. The average person has 1.4m2 of skin. What is the energy per second radiated by the average person in
the form of blackbody radiation? What is the peak wavelength of emitted radiation? Why can’t we see
it with our eyes?

Solution: Answer: L = A · σ · T 4 = 1.4 · 5.6710−8 · (273 + 37)4 = 733W

Note that the answer may vary slightly (700 − 730W ) on the assumed temperature of the human
body. In the above example, we have chosen 37C.

Λ[Å] = 2.9 · 107

T [K] = 93548Å = 9.4microns =⇒ IR (human eye does not see in IR)

7. On March 21st at true noon, length of the shadow of a vertical rod was equal to its height. On which
geographic latitude did this happen?

Solution: Answer: φ = ±45.

21st of March is the day of spring equinox. Thus the Sun can have a height of h = 90−φ. Since the
length of the shadow is equal to its height it means that height of the Sun was 45◦. Thus geographic
latitude of this place was φ = ±45◦(both north and south count).

8. In stars like the Sun, helium nuclei are formed by fusing hydrogen nuclei together in a process known
as the proton-proton chain. One step of the proton-proton chain consists of a deuterium nucleus (md =
2.01410 u) fusing together with a hydrogen nucleus (mH = 1.00783 u) to form a helium-3 nucleus
(mHe = 3.01603 u), where u = 1.6605 × 10−27kg. How much energy is released during this fusion
reaction?
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Solution: It is necessary to calculate the mass defect. The missing mass has been converted into
energy. From conservation of mass,

md +mH = mHe + ∆m.

Rearranging,
∆m = md +mH −mHe,

and plugging in the given masses,

∆m = (2.01410 + 1.00783− 3.01603) u,

∆m = 0.0059 u,

∆m = (0.0059 u)

(
1.6605× 10−27 kg

u

)
,

∆m = 9.797× 10−30 kg.

Then to find the energy,
E = mc2,

E = (9.797× 10−30 kg)
(

3.0× 108 m

s

)2

,

E = 8.817× 10−13 J.

9. Solar wind consists of protons that fly with the speed of 300 km/s and they fill the space of interplanetary
matter around Earth with 10 particles/cm3. With what force is this “wind” hitting the Moon? Recall
that mass of a proton is mp = 1.6 · 1024 g. Radius of the Moon is Rm = 1737 km.

Solution: Answer: F = 1.4 tons.

From 2nd Newton’s Law F = a · m = ∆V
∆t m = ∆(Vm)

∆t , i.e. equals change of impulse per unit
of time. We assume that the protons reaching to the Moon give its impuls without changing its
mass. Let V be the wind speed and ρ the density of particles. Then ρV particles hit per unit time
per unit area of the Moon, giving impulse mpV ρV . Over the whole surface of the Moon we get
F = πR2

mρmpV
2 = 1.4 tons.

10. Mars orbits the Sun at an average distance of 2.28× 1011 m and has a radius of 3.39× 106 m. The Sun
has a luminosity of 3.828 × 1026 W. How much solar energy falls on the surface of Mars each second?
Ignore any effects of Mars’ thin atmosphere.
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Solution: At the distance of Mars’ orbit, the Sun’s energy output is spread over a sphere with an
area of

A = 4πr2 = 4π(2.28× 1011 m)2 = 6.53× 1023 m2.

Dividing the luminosity of the Sun by this area gives,

L�
A

=
3.828× 1026 W

6.53× 1023 m2
= 586

W

m2
.

Mars presents a circular area to the Sun of

AMars = πr2
Mars = π(3.39× 106 m)2 = 3.61× 1013 m2.

Therefore, the total energy that falls on the surface of Mars will be

L�
A
AMars =

(
586

W

m2

)
(3.61× 1013 m2) = 2.12× 1016 W.

11. When a gravitationally bound system (such as a galaxy) forms, it transitions from a just bound state
(Ekin = |Epot|) to a virialized state (Ekin = 0.5|Epot|) and the excess binding energy has to be radiated
away. Consider an idealized disk galaxy with an exactly flat rotation curve with a rotation speed of
vcirc = 220km/s (you can neglect the kinetic energy in random motions). Its density profile cuts off
abruptly at a radius of Rmax = 50kpc. Assume that it took 500 million years for this galaxy to collapse
to its present state. What was its mean luminosity (in units of solar luminosity) due to the release of
the binding energy during that period?

Solution: Since the final kinetic energy is only half of the potential energy, the amount radiated
away must be also equal to the current kinetic energy.

First we need to estimate the total mass of the galaxy. The easiest way to do this is to look at the
centripetal force acting on a particle at the outermost radius:

mv2
circ

Rmax
=
GmM

R2
max

→M =
v2
circ

GR2
max

.

The outer radius is 50 kpc and vcirc = 220 km/s, so M = 1.12 × 1045 g = 5.63 × 1011M�. The
kinetic energy is

1

2
Mv2

circ = 2.71× 1059 erg.

The mean luminosity is just

L =
Ekin
t

= 1.715× 1043ergs−1 = 4.48× 109L�.

2 Long Questions

1. In 2008, while observing WASP-14, a main sequence star of mass 1.211 M� and radius 1.306 R�, an
exoplanet called WASP-14b was discovered via the transit method. Photometry as well as radial velocity
data are shown in the figures. Transits occur once every 2.243753 days. The radial velocity of the center

Page 4



of mass of WASP-14 and its planet is -4.99 km/s. Fitting of the radial velocity curve indicates that the
argument of periastron of the orbit of WASP-14b is 254.9◦.

(a) Determine the length of the semimajor axis of the orbit of WASP-14b.

Solution: Answer: ap = 5.348× 109 m = 0.0357 AU.

From Kepler’s third law:

(a∗ + ap)
3 =

G(M∗ +Mp)

4π2
P 2

Assuming that the mass of the planet is negligible to the mass of the host star, and that the
semimajor axis of the host star is negligible compared to the semimajor axis of the planet gives

a3
p =

GM∗
4π2

P 2

Solving for ap, we get

ap =

(
GM∗
4π2

P 2

)1/3

= 5.348× 109 m = 0.0357 AU

(b) Determine the density of WASP-14b.
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Solution: Answer: ρ = 4843.7 kg/m
3
.

To find the mass, we assume the orbit is circular. Since the planet is transiting, its inclination must
be approximately 90◦. Therefore, the velocity of the host star’s movement is the amplitude of the
radial velocity curve.

v∗ =
(−4.02)− (−6.02)

2
= 0.995 km/s

The velocity of the planet can be calculated from the semimajor axis from part (a):

vp =
2πap
P

Finally, the two velocities v∗ and vp are related by the conservation of momentum: M∗v∗ = Mpvp.
Solving for Mp gives

Mp =
M∗v∗
vp

= 1.383× 1028 kg

Note that given the eccentricity from part (c), we can find a more accurate mass of the planet;
however, assuming circular orbits gives a close approximation.

To find the radius, we compare the magnitude difference during transit. A difference in magnitude
∆m relates to flux by

∆m = −2.5 log

(
Ftransit
F

)
The normalized drop in flux during transit (i.e. relative to the normal flux) is therefore

∆Fnorm =
F − Ftransit

F
= 1− Ftransit

F
= 1− 10−∆m/2.5 = 0.0093

The normalized drop in flux relates to the radii of the host star and planet by

∆Fnorm =

(
Rp
R∗

)2

The radius of the planet can then be found: Rp = R∗
√

∆Fnorm = 8.786× 107 m.

Density is simply

ρ =
Mp

Vp
=

3Mp

4πR3
p

= 4843.7 kg/m
3

(c) Determine the eccentricity of the orbit of WASP-14b.
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Solution: Answer: e = 0.0964.

Because the planet is transiting, we know that the inclination must be 90◦. Let ω be the argument
of periastron, which is the angle between the periapsis and the plane of the sky. Let θ be the true
anomaly, which is the angle between the planet and the periapsis. Therefore, θ + ω is the angle
between the planet and the plane of the sky.

Let z be the position of the planet along the axis perpendicular to the plane of the sky (i.e. toward
and away from the observer). Let r be the distance from the planet to the host star. z = r sin (θ + ω).
The radial velocity of the star is simply the time-derivative of z, which is ż = ṙ sin (θ + ω) +
rθ̇ sin (θ + ω).

The orbit equation gives the distance from the host star to the planet as a function of true anomaly:

r =
a(1− e2)

1 + e cos θ

Taking the time-derivative of r gives:

ṙ =
a(1− e2)

(1 + e cos θ)2
· e sin θ =

rθ̇ · e sin θ

1 + e cos θ

ṙ can then be substituted into the expression for radial velocity:

ż = rθ̇

[
e sin θ

1 + e cos θ
· sin (θ + ω) + cos (θ + ω)

]
From Kepler’s second law:

Ȧ =
1

2
r2θ̇ =

A

P
=
πa2
√

1− e2

P

rθ̇ =
2πa2

√
1− e2

rP

rθ̇ =
2πa2

√
1− e2

P
· 1 + e cos θ

a(1− e2)
=

2πa(1 + e cos θ)

P
√

1− e2

This can then be substituted into the expression for radial velocity:

ż =
2πa

P
√

1− e2
[e sin θ · sin (θ + ω) + (1 + e cos θ) · cos (θ + ω)]

ż =
2πa

P
√

1− e2
[e cosω + cos (θ + ω)]

The term cos (θ + ω) determines the radial velocity over time, since all other variables are constants.
Radial velocity is maximized when cos (θ + ω) = 1 and is minimized when cos (θ + ω) = −1. Let
k = 2πa

P
√

1−e2 . {
k(e cosω + 1) = żmax

k(e cosω − 1) = żmin

Subtracting the two equations gives 2k = żmax − żmin, or k = 1
2 (żmax − żmin). Adding the two

equations gives 2ke cosω = żmax + żmin. So,

e cosω =
żmax + żmin
żmax − żmin

e =
żmax + żmin

cosω(żmax − żmin)
= 0.0964
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2. The star Sualocin (RA: 20h 39.6m, Dec: 15◦ 54.7’, absolute magnitude: -0.4) is about 78 pc away from
our solar system, and the star Rotanev (RA: 20h 37.5m, Dec: 14◦ 35.7’, absolute magnitude: 1.6) is
about 31 pc away. An alien astronomer is on a planet with Earth’s mass and radius orbiting Rotanev.
The planet has a uniform albedo of 0.3.

(a) What is the angular distance between Sualocin and Rotanev?

(b) What is the distance between these stars in parsecs?

(c) On the alien’s planet, what is the angular separation in the sky between Sualocin and our Sun?

(d) How much greater is the flux received by the planet from Sualocin than that received from our Sun?

3. Let’s suppose that at some point in the recent past, all the hydrogen and helium in the universe had
been instantly fused into iron in stars, and that the energy released was thermalized into black body
radiation. Take the baryon density to be ρb = 4.2×10−31 g/cm3. This is about 75% hydrogen (1 baryon)
and 25% helium (4 baryons) by mass. The binding energy per nucleon of 56

26Fe is 8.8 MeV and that of
4
2He is 7.1 MeV.

(a) What is the current temperature of this black body radiation?

Solution: Answer: T = 4.40K.

Without considering intermediary products, we have these two reactions:

56 1
1H→

56
26Fe

14 4
2He→ 56

26Fe

We can calculate the energy released in each of these reactions by computing the binding energy
on each side. There is no binding energy for a hydrogen atom, so the energy released in the first
reaction is 56× 8.8 MeV = 492.8 MeV per Fe. For the second reaction, the binding energy will by
(56× 8.8 MeV) - (14× 4× 7.1 MeV) = 95.2 MeV per Fe.

To find how much iron is actually produced, we need to determine the number densities of hydrogen
and helium using the mass fraction given in the question:

nH =
0.75ρb
mH

nHe =
0.25ρb
mHe

where mH and mHe are the masses of hydrogen and helium respectively. Then , the total energy
density released is:

u =
492.8MeV × nH

56
+

95.2MeV × nHe
14

To get the temperature, we use:
u = aT 4

where a is the radiation constant. This gives us a temperature of 4.40 K.

(b) Determine what wavelength the blackbody spectrum would peak at. What region of the electro-
magnetic spectrum would this be in?
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Solution: Answer: λ = 6.59× 10−2 cm, microwave.

Using Wien’s displacement law:

λ =
b

T

where b = 2.898 × 10−3 m K, we get a wavelength of 6.59 × 10−2 cm, which is in the microwave
region of the electomagnetic spectrum.

(c) How long would it take stars to fuse all the hydrogen and helium in the universe, given that the
mean bolometric luminosity per unit volume emitted by stars today is about 3 × 108 L�/Mpc3?
Compare this to the present age of the universe.

Solution: Answer: 7.11× 1019 seconds (2250 Gyr)

The time it would take is given by the energy density (found in part (a)), divided by the rate of
fusion, i.e. the luminosity given in the problem:

t =
u

L

This gives us 7.11× 1019 seconds, or about 2250 Gyr. This is much longer than the current age of
the universe (13.7 Gyr).

Page 9


